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We investigate the evolution of a parallel shear flow which has embedded within it a
thin, symmetrically positioned layer of stable density stratification. The primary
instability of this flow may deliver either Kelvin—-Helmholtz waves or Holmboe waves,
depending on the strength of the stratification. In this paper we describe a sequence of
numerical simulations which reveal for the first time the behavior of the Holmboe
wave at finite amplitude and clarify its structural relationship to the Kelvin—
Helmholtz wave.

The flows investigated have initial profiles of horizontal velocity and Brunt—Vaisala
frequency given in nondimensional form by U=tanh{ and N?=Jsech?R{, respec-
tively, in which { is a nondimensional vertical coordinate, J is the value of the
gradient Richardson number N2/(dU/d{)? at {=0, and R=3. Linear stability theory
predicts that the flow will develop Holmboe instability when J exceeds some critical
value J., and Kelvin-Helmholtz instability when J is less than J; J. being
approximately equal to 0.25 when R=3. We simulate the evolution of flows with
J=09, J=045, and J=0.22, and find that the first two simulations yield Holmboe
waves while the third yields a Kelvin—Helmholtz wave, as predicted.

The Holmboe wave is a superposition of two oppositely propagating disturbances,
a right-going mode whose energy is concentrated in the region above the centre of the
shear layer, and a left-going mode whose energy is concentrated below the centre of
the shear layer. The horizontal speed of the modes varies periodically, and the
variations are most pronounced at low values of J. If J=<J,, the minimum horizontal
speed of the modes vanishes and the modes become phase-locked, whereupon they
roll up to form a Kelvin-Helmholtz wave as predicted by Holmboe (1962). When J is
moderately greater than J,, the Holmboe wave ejects long, thin plumes of fluid into
the regions above and below the shear layer, as has often been observed in laboratory
experiments, and we examine in detail the mechanism by which this occurs.
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1. INTRODUCTION

It is generally accepted that a laminar flow may become turbulent
via a finite sequence of supercritical transitions, each of which
introduces a new element of complexity into the flow. Transition
occurs when the magnitude of some control parameter exceeds a
value beyond which the current flow state loses stability. First
proposed by Ruelle and Takens (1971), this scenario for the transi-
tion to turbulence is most strikingly evident in the Bénard problem,
in which a fluid layer heated from below exhibits a sequence of
increasingly complex yet individually distinctive patterns of flow as
the temperature difference between its upper and lower boundaries is
increased. Since there is no corresponding external energy source in
the free shear flow problem, the parameter which controls the
transitions must be connected with the flow itself, most likely with
the amplitude of the instantaneous wave state. The primary and
higher-order instabilities of the Bénard flow have been identified and
studied extensively [e.g., the review by Busse (1981)]; the effort to
catalogue in similar fashion the instabilities of the free shear layer
is at a relatively primitive stage, due largely to the greater complexity
of the initial flows in which the secondary and higher-order tran-
sitions appear (Thorpe, 1987). Attention has been focussed almost
exclusively on the Kelvin—-Helmholtz wave and the secondary insta-
bilities to which it succumbs at large amplitude (Patnaik et al., 1976;
Peltier et al. 1978; Corcos and Sherman, 1984; Corcos and Lin, 1984;
Klaassen and Peltier, 1985a,b,c).

However, the Kelvin-Helmholtz wave is not the only primary
instability of a stratified shear layer. Holmboe (1962) showed, in
particular, that if the stratification takes the form of a sharp change
in density at the centre of the shear layer, then the flow may exhibit
cither the Kelvin-Helmholtz instability or a related oscillatory
instability, depending on the magnitude of the density jump. The finite-
amplitude manifestation of the oscillatory instability is now referred
to as the Holmboe wave (Browand and Wang, 1972). The import-
ance of Holmboe waves in geophysical flows has yet to be estab-
lished. They are liable to be less common than Kelvin-Helmholtz
waves, since they occur under more restricted conditions. Structures
resembling Holmboe waves have appeared in photographs (Sped-
ding, 1988) and radar observations (e.g. Emmanuel et al, 1972
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Gossard and Richter, 1970) of the atmosphere, but positive identifi-
cation of these disturbances as Holmboe waves from a single
“snapshot” is impossible due to the time-dependence of the wave-
form. In addition, information regarding the expected form of a large
amplitude Holmboe waves in geophysical flows is sparse. Holmboe
waves have been observed frequently in the laboratory (Keulegan,
1949; Ellison and Turner, 1959 [see description in Townsend (1958,
p- 372)]; Thorpe, 1968a; Browand and Wang, 1972; Browand and
Winant, 1973; Koop, 1976; Yoshida, 1977; Koop and Browand, 1979;
Maxworthy and Browand, 1975; Tritton and Davies, 1985; Lawrence
et al., 1987), but theoretical results from beyond the linear regime
have not existed before now. In this paper we present the results of a
sequence of numerical simulations of shear layers enclosing abrupt
density changes of various magnitudes. The results of these numeri-
cal experiments reveal the behavior of the Holmboe wave as it grows
to large amplitude, and clarify its relationship to the Kelvin—
Helmholtz wave.

We begin in Section 2 with a discussion of the linear theory,
summarizing and extending the inviscid analyses of Hazel (1972). We
then consider the effects of viscosity and heat conduction on the
mean flow and on the growth rates of the instabilities, and conclude
the section with a discussion of the dimensionality of the primary
Holmboe instability. Section 3 is devoted to a discussion of the
methodology employed in the simulations: the numerical model used
to evolve the fields, the initial conditions chosen, and the diagnostic
analyses employed to interpret the results. In Section 4, the results of
the nonlinear simulations are presented and discussed. We describe a
sequence of flow simulations which spans the parameter space from
the Holmboe to the Kelvin-Helmholtz regime. A summary of the
results is given in Section 5.

All of our analyses in the present paper will focus upon the
symmetric case, in which the shear, the buoyancy frequency, and the
boundary conditions are symmetric with respect to the centre of the
shear layer. This is a highly idealized special case which is not likely
to occur in nature, but it is the simplest context in which to study
the essential dynamics of the wave. The effects of asymmetry in the
profiles or boundary conditions will be explored in a separate paper.
Future investigations will also include detailed analysis of the
secondary instabilities to which the primary nonlinear Holmboe
wave is subject.
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2. LINEAR THEORY

In this section we shall first describe the stability properties of the
stably stratified shear layer, using a normal-mode formulation for an
inviscid, vertically unbounded flow. We then briefly discuss the
effects of diffusion and of symmetrically placed upper and lower
boundaries' on the evolution of the flow. Finally, we consider the
dimensionality of the Holmboe instability, i.e. whether or not the
fastest-growing primary instability is necessarily two-dimensional.

The flows to be discussed here evolve from initial conditions of
stably stratified parallel shear flow in which the horizontal and
vertical components of velocity and the potential temperature have
the following mathematical forms:

u,=ugtanh(z/h). u3;=0, O=0Oexp[Atanh(Rz/h)], (1)

in which u, and A are constants and © is a constant reference value
for the potential temperature. The domain extends vertically from
z=—00 to z=+o0. The half-depths of the shear layer and the
inversion are h and h/R respectively. A two-layer model is obtained
in the limit as R—co. (It will be shown below that setting R=3 is
sufficient to introduce effects characteristic of a two-layer flow, i.e.
the appearance of Holmboe instability when the stratification is
sufficiently strong.) Note that the potential temperature profile is
nearly identical to a tanh profile provided that A« 1. The “exp-tanh™
version is employed here for analytical convenience, as it yields a
simple form for the loganithmic derivative of 8, which appears in the
definitions of the buoyancy frequency and the gradient Richardson
number.
The inviscid Boussinesq equations for an ideal gas are

Du/Dt=—p~ '0p/dx; +0*gd;s,
(2)
D6*/Dt=0, odu;/dx;=0,

in which g is a constant reference density and
0*=(0—-0©)/0=—(p—p)/p,

provided that departures of € and p from their respective reference
values are small. When these equations are linearized about the
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steady state solution (1) and the appropriate boundary conditions
applied, the result is a boundary value problem for the perturbation
fields with independent variables x,z, and t. The usual approach to
this problem involves assuming that the x and ¢ dependence of the
disturbance has the normal mode form exp [ik(x—ct)], in which k is
the horizontal wavenumber and c is the phase velocity. The result is
an eigenvalue problem for k and ¢ involving an ordinary differential
equation with independent variable z, which is called the Taylor—
Goldstein equation.

In Holmboe’s (1962) analysis, the continuous profiles (1) were
approximated by the piecewise linear profiles which are illustrated in
Figure | by the dashed lines. This simplification permits the z-
dependence of the solution to be calculated analytically and, since
the x-dependence is removed by Fourier transformation, leaves t as
the only independent variable. The necessity of assuming a particular
form for the time dependence is thus avoided. In this section we
describe the results of normal mode analysis; results from Holmboe’s
work will be discussed later. In the present study, linear theory is
relevant only insofar as it provides guidance in our choice of initial
parameter values for the nonlinear simulations, and we shall restrict
our discussion of linear theory accordingly; a more detailed explo-

HORIZONTAL POTENTIAL
VELOCITY TEMPERATURE

-1 | =& [+4

Figure 1 Profiles defining a stably stratified parallel shear flow. Smooth curves are
the ‘tanh’ profiles defined by equation (1); dashed curves are the piecewise-linear
approximation used in analytical calculations.
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ration of the linear model will be the subject of a subsequent
publication.

We begin by nondimensionalizing the problem using u, and h as
length and velocity scales. Combining the linearized field equations
in the usual fashion, we obtain a two-point boundary value problem

W'+ [(U—=c) 2URi—(U—c) 'U"—a?]w=0; W(+0)=0, (3)

in which U, ¢, a, and z are the nondimensional background velocity,
phase speed, horizontal wavenumber and vertical coordinate respec-
tively, w is the z-dependent complex amplitude of the non-
dimensional vertical velocity, and the primes denote differentiation
with respect to z. The gradient Richardson number Ri is defined by

Ri(z) =gh(In ) /u2U"%, (4)

and we define in addition a bulk Richardson number J, which is
characteristic of the initial state as a whole, by

J =Ri(0)=ARgh/u}. (5)

(3) constitutes an eigenvalue problem which implicitly defines a
dispersion relation c¢=¢(x;J,R), or equivalently o=o(x;J,R) in
which 6= —ixc is the exponential growth rate, for a background
flow defined by the values of J and R.

We have solved (3) numerically using a parallel shooting algor-
ithm similar to that described by Hazel (1972). The ODE is
integrated by means of a sixth-order Runge-Kutta—Fehlberg routine
(Enright et al., 1974), and the roots of the secular determinant, which
define the eigenvalues, are found using a quadratic interpolation
scheme.

The stability characteristics of the flow depend strongly on the
value of the scale ratio R. When R~1, the flow is stable for J
greater than some critical value J(R), and it is unstable to Kelvin—
Helmholtz waves for J<J. For R=1, J.=1/4, When R exceeds a
critical value R, the flow becomes unstable for all J, with Holmboe
instability appearing in the region J>J. The precise value of R, is
not known, and it is difficult to determine numerically, but appli-
cation of the Miles-Howard theorem (Miles, 1961; Howard, 1961)
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reveals that R,>2 is a necessary (though not sufficient) condition in
order that instability should be possible for all J, as we now show.
The gradient Richardson number profile (3) corresponding to the
velocity and potential temperature profiles (1) is

Ri(z)=J sech?Rz/sech*z. (6)

As |z| >0, (6) becomes Ri(z)~3J exp[2(2—R)|z|]]. If R>2, there is
always a region in the flow throughout which Ri<1/4, and thus
instability is possible for any value of J.

Numerical calculations at various values of R have enabled us to
place an upper bound of 2.5 on R_. Larger values of R than this are
needed to obtain Holmboe waves with appreciable growth rates, but
setting R too large in a numerical simulation places excessive
demands on the resolution, as it leads to the development of
inversions which are extremely thin relative to the shear layer depth.
These competing considerations have led us to choose the value
R =3 for the simulations to be described in what follows.

Figure 2a shows the real and imaginary parts of ¢ as functions of
a and J for R=3. (The stability diagram shown in Figure 2b
incorporates the effects of diffusion and horizontal boundaries. It will
be discussed in detail later in this section.) Eigenvalues ¢ occur in
complex conjugate pairs, and when ¢,, the imaginary part of o, is
nonzero, the corresponding eigenfunctions describe disturbances
which propagate in opposite directions with phase speed equal to
a0;. The right-going disturbance has its largest amplitude in the
upper region of the shear layer, while the left-going disturbance is
strongest in the lower region. Near the centre of the shear layer, the
amplitudes of the two disturbances are similar, and they thus interfere
to create the effect of a standing wave, with oscillation frequency
equal to a;. Oscillatory (Holmboe) instabilities are thus predicted in
the upper part of the unstable region shown in Figure 2a, where o is
complex. For smaller J, ¢ is real, and we thus expect a stationary
(Kelvin—Helmholtz) instability. The numbered points indicate para-
meter values for which nonlinear simulations have been performed.
We predict on the basis of Figure 2a the appearance of a rapidly
oscillating Holmboe wave at point I, a more slowly oscillating
Holmboe wave at point 2, and a Kelvin—-Helmholtz wave at point 3.

We turn now to an examination of the effects of diffusion on the
background flow. The background profiles (1) are not a steady state
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Figure 2 Dispersion relation a{x,J) for tanh profiles with R=3. Smooth curves are
contours of the growth rate g,; dashed curves are contours of the oscillation frequency
a;. (a) is the inviscid, vertically unbounded case; (b) is the diffusive, vertically bounded
case with Re=300, Pr=9 and frictionless insulating boundaries placed at a distance
5h above and below the centre of the shear layer.

solution of the hydrodynamic equations if the effects of nonzero
viscosity and thermal conductivity are included. Diffusive effects
cause the tanh profiles to broaden in time and thus modify the
stability characteristics of the flow. The implications of this time-
dependence must be taken into account when we choose initial
parameter values for the nonlinear simulations.

The evolution of a purely horizontal velocity profile U(z,t) under
the influence of diffusion is governed by the usual linear equation

dU/dt=Re™*3*U/dz?, (7)
in which Re is the Reynolds number huy/v and v is the kinematic
viscosity. A simple solution to (7) which closely approximates our
tanh velocity profile is

U(z, t)=erf[3n'?z/h(1)]; h(t)=(1+ Re *nt)'/2. (8)

The half-depth h/R of the stratified layer evolves in a similar fashion,
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h(t)/R(t)=Rq '[1+ R{(RePr)™'nt]'/2, (9)

where Pr is the Prandtl number v/, k is the thermal diffusivity, and
R, =R(0). Combining these results, we find

R(t)=Ro{(1+Re ™ 'nt)/[1+ R§(RePr) 'nt]}/2, (10)

Note that the Reynolds number which appears in Egs. (7) through
(10) is computed using the initial half-depth of the shear layer in
dimensional units. As the initial profiles diffuse, the flow becomes
more nearly inviscid as the “effective” Reynolds number increases in
proportion to h(t).

In the present context, the most important effect of mean flow
diffusion is the evolution of the scale ratio R(t), as described by Eq.
(10). We must choose values of Re and Pr for the nonlinear
simulations in such a way as to ensure that R remains significantly
larger than the critical value, R .~2.5, for a sufficient length of time
so that the Holmboe wave may grow to finite amplitude. It is clear
from Eq (10) that if R is equal to Pr'/? at t=0, it remains equal to
Pr'’? for all time. If R has some other value initially, it approaches
the value Pr'/? asymptotically on a time scale proportional to Re. In
the atmosphere, Pr~1, so that a stratified shear flow must even-
tually become stable to Holmboe waves, but as Re is typically very
large in such flows, Holmboe waves have ample time to grow.
However, such extreme Reynolds numbers cannot be managed by a
numerical model with the computer memory currently available.
Instead, we suppress the time dependence of R entirely by setting Pr=9
(with Ro=3, as discussed earlier). With this value of Pr, an initial
Reynolds number of 300 is easily manageable by our numerical
‘model, and is large enough to permit the evolution of the waves in
which we are interested. It will be noted that with Re=300 and
Pr=9, we are actually modelling something very similar to a
laboratory-scale flow. (The salt-stratified water used in laboratory
experiments has Pr~700, but Pr=9 should be sufficiently large to
yield similar behavior.) We assume that geophysical flows evolve in
essentially the same manner.

In Figure 2b, we display the results of a normal-mode stability
analysis incorporating the effects of viscosity and heat conduction.
The calculation was performed using a two-dimensional version of
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the algorithm described in Klaassen and Peltier (1985b). The para-
meter values Re=300 and Pr=9 were chosen in accordance with the
considerations discussed above.

In addition, we have included frictionless insulating boundaries
located at a distance 5h above and below the centre of the shear
layer. Figure 2b shows that the presence of boundaries destabilizes
the flow at low values of «, in accordance with the inviscid results of
Hazel (1972), but it has little effect on the wavenumber and the
growth rate of the fastest-growing mode at each J.

It is evident upon comparison of Figures 2a and 2b that the level
of diffusion considered here does not alter the qualitative stability
characteristics of the flow. The regimes of Kelvin-Helmholtz and
Holmboe instability still exist and are located in regions of the J—a
plane close to those found in the inviscid case. In addition, there is
no significant change in the wavenumber of the fastest-growing mode
at any J. However, diffusion alters the numerical values of the
growth rates to a substantial degree. For very strong stratification (J
greater than about 0.9 in this case), diffusion tends to increase o,,
while o, decreases in the presence of diffusion at lower values of J.
One important result of this is that the local maximum of the
growth rate in the Holmboe wave regime is shifted from J~0.45 to
J~0.95, and becomes much more sharply defined. We will turn next
to a discussion of the dimensionality of the primary Holmboe
instability, and we will see that this sharpening of the local
maximum of the growth rate may have important implications in
this context.

To this point, we have assumed implicitly that the fastest-growing
mode of instability is two-dimensional (i.e. there is no dependence on
the spanwise coordinate y), as is traditional in consequence of
Squire’s theorem (Squire, 1933; Yih, 1955). In this case, however, we
are concerned with an instability whose growth rate increases with
increasing stratification in some regions of the J—a plane, as is
evident on inspection of Figure 2b. This fact requires that we
examine the assumption of two-dimensionality in some detail.

A plane wave propagating at an angle ¢ from the x-direction is
only affected by the component of the background shear which is
parallel to its wave vector, i.e. it “sees” a background velocity profile
U(z)cos¢. The behavior of such a wave is easily deduced from that
of a two-dimensional wave with the same wavelength by employing
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“effective” values of the relevant nondimensional parameters, which
are computed using the reduced velocity scale uycos¢. The results
are summarized in the following relation:

oo, ,J,, R)=cos ¢-0(2,0,J, R), (11)

in which J,=J,/cos’¢ and o=0a(a,0,J,R) is the two-dimensional
dispersion relation calculated earlier. In a viscous normal-mode
analysis, the effective Reynolds number is Recos ¢. By setting J=0
in (11) (which makes R irrelevant), we recover Squire’s theorem.

The Holmoe instability, being dependent on stratification for its
existence, has zero growth rate when J=0. As J increases, o,
increases to a maximum, then decreases asymptotically to zero at
very large J. As has been pointed out by Browand and Wang (1972)
and more recently by Lawrence et al. (1987), this increase in growth
rate with increasing J introduces the possibility that the fastest-
growing mode at a given (o,J) may have ¢ #0. These instabilities
occur in pairs with equal growth rates and opposite values of ¢ (i.e.
¢, = —¢,), which interfere to generate waveforms which are periodic
in the spanwise direction. The waves observed in the laboratory
experiments of Lawrence et al. (1987) strongly suggest the presence
of this three-dimensional primary instability. We must point out,
however, that positive Ag,/AJ does not automatically imply three-
dimensionality, owing to the factor cos ¢ which multiplies the right-
hand side of (11). We expect a three-dimensional instability to be
observed on a flow with J=J, if and only if

d(o,/J"12)/ds); -5, >0. (12)

Here, o, is evaluated on the curve defined by the locus of all points at
which ¢, is maximized with respect to a, and the derivative d/ds is
taken along this curve in the direction of increasing J.

For the piecewise-linear model considered by Holmboe (1962) and
by Lawrence et al. (1987, cf. Figure | of this paper), we show in the
Appendix that the inequality (12) is not satisfied at any point in the
Holmboe wave regime. For the more realistic model considered here
(i.e. smooth profiles of velocity and potential temperature in a
viscous, heat conducting, vertically bounded flow), the corresponding
calculation must be done numerically and will be deferred to a later
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publication. For “tanh” profiles in an inviscid flow, the stability
characteristics of which are illustrated in Figure 2a, the local
maximum in o, is clearly too weak for (12) to be satisfied at any J,.
However, the sharpening of the local maximum in ¢, due to
diffusion, which was noted in the discussion of Figure 2b, leads us to
suspect that the fastest-growing Holmboe instability may in fact be
three-dimensional when the Reynolds number is sufficiently small.

An alternative explanation for the three-dimensionality observed
in the laboratory experiments of Lawrence et al. (1987) is that the
Holmboe wave is modified at an early stage of its evolution by the
emergence of a three-dimensional secondary instability. We plan to
investigate both of these alternatives in detail in the near future, but
for purposes of the present paper we shall restrict our attention to
the evolution of two-dimensional instabilities.

3. METHODOLOGY

The numerical model which we employ is based on the anelastic
approximation to the hydrodynamic equations. The thermodynamic
fields T, 6, p, and p are expanded about a hydrostatic reference state
in which the potential temperature is equal to a constant, ©. We
nondimensionalize using temperature scale ©, density scale p,,
pressure scale poui, with velocity and length scales u, and h as
before. The expansions for the field variables are then

T(x,z,t)=T(z) + T'(x, z, 1), (13a)
B(x,z,t)=1+A0*(x, z, 1), (13b)
p(x,2,1) = p(z) + p(x, 2,1), (13¢)
px, 2, 1) = p(z) + p(x, 2, 1), (13d)
with
dp/dz=—pg, T(p/po) ®4=1, p=pR,T, (14)

in which R, and C, are the gas constant and specific heat capacity at
constant pressure for dry air. Note that the nondimensional potential
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temperature deviation 0* is expressed as a fraction of its maximum
value A. At z=0, we have p=p, and T=1. Although it is assumed
in this formulation that the fluid is an ideal gas, the results apply
equally well to liquids provided that departures from the reference
state are small. Solutions to (14) for the thermodynamic reference
fields are easily derived, and are nearly constant for our application,
since the domain height employed is only a small fraction of the
isentropic scale height C,/g. It may be shown (Batchelor, 1953;
Ogura and Phillips, 1962) that the velocity field ufx,z,t), i=1,3 and
the deviations of the thermodynamic fields from the reference state
(provided that the latter are small) obey the following set of
equations:

Du;/Dt = —pdp'/dx;— C ™ ?gp'd;3+ R ' J6*3,3+(Re)™ 'a(Dy;)/ox,,

(15a)
d(pu;)/0x;=0, (15b)
DO*/Dt=(RePr)~'a%0*/0x?, (15¢)

in which
D;j=0uy/0x;+ Au;/dx;—(2/3)0;;0u,/0x,. (16)

Equations (15) form a closed set of four nonlinear PDE’s for the
unknown fields u,, u,, p’, and 6*, which depend on the variables x, z,
and t. Boundary and initial conditions in the three independent
variables are as follows:

(1) In the x-direction, we impose periodicity f(x+4,z,t)= f(x,z,1)
for each field, with the nondimensional wavelength A=2n/x equal to
that of the fastest-growing mode of linear theory, as described in
Section 2.

(2) At z=0 and z=H, we place horizontal, frictionless, insulating
boundaries on which the following conditions obtain:

0(puy)/0z=uy=0,  D;=0, (17a)

00*/0x = 0(pd6*/0z)/0z =0, (17b)
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op/0z=—(C?p) " 'gp'+R"'J6* +(pRe) 'd(pD,,)/z.  (17c)

(3) At t=0, the dependent fields are assumed to consist of two
components, namely the hyperbolic tangent background profiles and
a fluctuation from which the instability is initiated. The background
profiles are:

u, =tanh(z—3H), u3;=0, 6*=tanhR(z—}H), (18)

in which the scale ratio R is set equal to 3.0 and the value of J is
chosen according to the results of linear stability analysis, as shown
in Figure 2. In order to conserve computational resources, we
provide the instability with a head start by initializing the fluctuation
not as random noise but rather as a weak perturbation whose
structure is determined by the eigenfunctions of the fastest-growing
mode of linear stability theory. In the case of Holmboe instability,
the initial perturbation is a superposition of two distinct eigenmodes
which have equal growth rates and equal but opposite horizontal
phase velocities, as was discussed in Section 2. The initial amplitudes
of the nodes are set equal, while the initial phase relationship
between them is chosen arbitrarily.*

This completes the description of the mathematical model
employed for the nonlinear simulations to be reported here. The
numerical algorithms employed to solve the model equations are
described in general in Clark (1977), and specifically for application
to the stratified parallel flow problem in Peltier et al. (1978). The
model has been previously employed to simulate nonlinear mountain
waves (e.g. Peltier and Clark, 1979) as well as for the Kelvin-
Helmholtz wave studies (e.g. Davis and Peltier, 1979; Klaassen and

*It might be supposed that the phase relationship between the two eigenmodes at
t=0 could play an important role in determining the future evolution of the wave. We
do not believe that this is so, for the following reasons. In most of the Holmboe wave
regime, and in particular at points 1 and 2 of Figure 2, the rate at which the right-
going and left-going modes pass by one another is considerably greater than the
growth rate (i.e. |o;|>0,), hence the wave undergoes many oscillations in the process
of growing to large amplitude and the point in the cycle at which the simulation is
begun is not likely to be important. This argument becomes invalid as one approaches
the KH-Holmboe transition (between points 2 and 3 of Figure 2) and |o,| drops to
zero, but in this limit the two eigenmodes become indistinguishable in vertical
structure, so that the initial phase relationship between them is once again of little
importance.
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Peltier, 1985a) of which the present work is an extension. The fields
are evaluated on either a 128 x 128 or a 256 x 256 staggered grid,
and stepped forward in time using a leapfrog scheme with time step
chosen small enough to satisfy the Freidrichs—Loewy—Courant con-
dition. At appropriate intervals in each simulation the velocity,
pressure, and temperature fields are saved for later analysis.

Diagnostics to be employed in our analyses fall into three groups:
full space and time dependent fields, horizontal averages of these
fields which depend on the vertical coordinate and time, and
integrated quantities which depend on time only. The fields selected
to represent the flow for present purposes are the potential tempera-
ture deviation 6*(x,zt) and the vorticity {(x,z,t)=du,/0x—du,/dz.
Potential temperature will be visualized by means of contour plots.
Since thermal diffusion is relatively weak in these flows, the contours
behave very much like dye lines in a laboratory flow. The vorticity
field is represented by continuous shading, using a high resolution
palette from white to black. This emphasizes the locations and
magnitudes of the local extrema, which are features of primary
interest, much more clearly than contour plots. These two plots are
superimposed, providing an economical and detailed representation
of the appearance and underlying dynamics of the flow.

A feature of the potential temperature field which is of particular
interest in the study of Holmboe waves is the motion of the points at
which 0* is an extremum with respect to x for a given value of z.
With the proper choice of z, these x-values indicate the positions of
the oppositely propagating component disturbances which constitute
the Holmboe wave. The position of the minimum in 0* at a height
slightly above the centre of the domain, and that of the maximum at
a height slightly below the centre, are tracked continuously during
the simulations.

We monitor the evolution of four horizontally averaged quan-
tities—the velocity (which has a nonvanishing average in the x-
direction only) U(z,t), the potential temperature 0%z, t), the
Reynolds stress pu,u and the vertical heat flux R~ 'J56%u}, in which
the overbars denote horizontal averages (with the exception of the
adiabatic reference density p), and primes indicate deviations from
the horizontal average, e.g. u;=u,—U. The first two profiles allow
us to see how the mean flow evolves in response to the combined
effect of diffusion and wave growth. The vertical derivatives of the
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latter two quantities measure the contribution of the wave-mean
flow interaction to the time tendencies of the horizontally averaged
velocity U(z,t) and the horizontally averaged potential temperature
0*(z,t) respectively.

In addition, we shall follow the evolution of a set of integrated
quantities associated with the transfer of energy between the mean
flow and the wave. We define the mean flow kinetic energy, the wave
kinetic energy and the potential energy respectively as

R()=Gpa?y, K'(O)=CGpuu,
(19)
P(t)= —R™'J{pz0%),

where (*)=[§ *dz.
These quantities may be shown (Klaassen and Peltier, 1985a) to
obey an energy closure of the form

dR/dt= —C(R,K')— Re~'D(K), (20a)
dK'/dt = C(R,K') + C(P,K')— Re~ ' D(K’), (20b)
dP/dt = — C(P,K’) +(RePr)~ ' D(P). (20¢)

The quantities C(x, f) represent the transfer of energy from reservoir
o to reservoir f, and are defined as

C(K, K') = —{p(dufoz)uuy),
(21)

C(P,K')=R'J{p0*uy),

with C(a, f)= —C(B,a). Note that —C(K, K’) is the integral over z of
the product of the Reynolds stress and the mean shear, while
C(P,K’) is the integral over z of the vertical heat flux. D(«) represents
diffusion of energy from reservoir «, viz:

D(K) ={p(0a/dz)*y, D(K')=<{pDyD};,
(22)
D(P)=R " 'J{pa0*/oz).
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Note that the potential energy of the flow is increased by diffusion,
hence the positive sign on the diffusion term in Eq. (13c).

4. RESULTS

We begin the results section by showing a brief selection of
diagnostics from each of the three simulations (flows with strong,
moderate, and weak stratification, as illustrated in Figure 2), for
purposes of comparison. We then present for each simulation a full
set of diagnostics chosen to illustrate specific points of interest.

4.1 Overview

The wave kinetic energy histories for the three simulations are
shown in Figure 3. It will be noticed first from these data that
simulation 3 was terminated at a relatively early stage in the life

S

©

0 100 200 300 400 500
Time

Figure3 Natural log of wave kinetic energy for (a) point 1, (b) point 2 and (c) point
3. Thin vertical lines mark times for which further data are being presented.
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cycle of the wave. This was due to resolution problems which
developed in consequence of extreme gradients of velocity and
potential temperature, the latter being particularly severe because of
the large Prandtl number employed. Similar problems were encoun-
tered by Klaassen and Peltier (1985¢) in Kelvin—-Helmholtz wave
simulations with Re=500, Pr=1, J=0.07, and R=1. The wave was
well resolved up to maximum amplitude, however, and it is probable
that a three-dimensional secondary instability would have developed
near this stage (Klaassen and Peltier, 1985b). The first two simula-
tions were well resolved throughout their duration and were stopped
only as it became evident that the waves had entered a quasi-
equilibrium state dominated by very slow diffusive decay. We will
refer later to the thin vertical lines below the In K'(t) curves in
Figure 3; they indicate specific instants at which further diagnostics
will be presented.

Simulations 1 and 2 have clearly generated oscillatory waves, with
simulation 1 exhibiting the higher frequency oscillation. Simulation 3
delivered a monotonically growing wave which achieved maximum
amplitude much more quickly than did the oscillatory waves. These
qualitative features are in agreement with the predictions of linear
stability analysis; quantitative comparisons are not as easily interpre-
table. The oscillation frequencies at points | and 2 are both within
~10%, of the theoretically predicted values, and remain remarkably
consistent throughout the duration of the simulations. Exponential
growth rates may be measured approximately by fitting a straight
line to InK'(t) in the region where it is most nearly linear (apart
from the periodic oscillations). For simulations 1 and 2, this is
between t~50 and t~100. The growth rate is then given by
o,=3d[In K'(t)]/dt. In simulation 1, the growth rate is about 30%
lower than expected. The growth rate in simulation 2 agrees with
theory to within a few percent, and the stationary wave at point 3
grows about 20% faster than linear theory predicts. The growth
rates and frequencies observed in the simulations thus agree with the
predictions to the extent one would expect in light of the consider-
ations discussed at the end of Section 2.

Finally, it will be observed that the kinetic energy which the wave
achieves in these experiments is largely independent of the level of
stratification present. Although the Holmboe waves have much
smaller linear growth rates than do KH waves, they are apparently
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able to grow exponentially for a correspondingly longer time before
nonlinear damping sets in, and they thus achieve a much larger
amplitude than might be expected on the basis of their small linear
growth rates. A similar phenomenon has been observed in simula-
tions of asymmetric flows, where one component of the Holmboe
instability has a larger growth rate than the other, yet achieves a
comparable amplitude.

In Figure 4, we present contour plots of the potential temperature
field at three different times for each of the three simulations. The
times are indicated in Figure 3 by the longer vertical lines below the
InK'(t) curves. The upper contour line corresponds to 6*=0.9, i..
90% of the maximum deviation of the potential temperature field
from its mean value. The lowest contour represents 0* = —0.9, and
the other contour values are spaced equally between these extremes.
The central temperature interface is darkened for emphasis. These
conventions will be followed in all the contour plots of potential
temperatures that we present. Figures 4a and 4b show the oscillatory
waves at points 1 and 2, respectively, of Figure 2, as they evolve
through approximately one half-cycle near the time when maximum
wave kinetic energy is achieved. In Figure 4c, we see the stationary
disturbance at point 3 performing the characteristic roll-up of the
Kelvin-Helmholtz wave.

The Holmboe wave at point 1 has a relatively simple structure.
The oppositely propagating component waves predicted by linear
theory are clearly visible, as is the standing oscillation of the central
temperature interface. Note the highly localized form of the compo-
nent waves. Using the terminology of solitary waves, we will refer in
what follows to the outer extremities of the component waves as
“crests”, even though the “crest” of the lower wave extends down-
ward. At point 2, we observe the ejection of thin plumes of stratified
fluid into the regions above and below the shear layer, a pheno-
menon which is commonly observed in laboratory experiments (e.g.
Browand and Wang, 1972; Lawrence et al., 1987). As we will see
below, there is a concentration of clockwise vorticity in the lee of
each component wave, and the plumes are formed when these
vortices are strong enough to entrain stratified fluid from the
downstream faces of the component waves. At point 1, the strength
of the stratification relative to the shear (i.e. the bulk Richardson
number) is relatively large, and the vortices are thus unable to
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Figure 4 Contours of potential temperature deviation at sample times for simula-
tions 1, 2, and 3. Top contour is 8*=0.9; bottom contour is §*= —0.9.

entrain enough fluid to form a visible plume. The plumes shown in
Figure 4b are not permanent features; they subside as the compo-
nent waves pass each other and are regenerated in the next half-cycle
as the waves approach each other once again. The reasons for this
behavior will be discussed later when we examine the results of
simulation 2 in detail.

It is clear from Figure 2 that as we decrease the level of
stratification in this sequence of experiments, the phase speeds of the
upper and lower component waves should decrease, going ultimately
to zero at point 3. In the latter case, the component waves become
phase-locked, and wrap around each other to form the usual
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Kelvin-Helmholtz vortex. Holmboe (1962) examined this mechanism
in more detail, showing that the phase speeds of the component
disturbances in a Holmboe wave are not constant, but rather
oscillate along with the oscillation of the waveform. The weaker the
stratification, the more pronounced the variations in phase speed
become. This is readily understood if one thinks of the thin stratified
layer as a boundary between the component waves. When the
stratification is strong, the waves propagate independently of one
another and thus the phase speed is the same at all points in the
cycle. With weaker stratification, the waves interact and the phase
speeds thus vary with the configuration.

This prediction may be verified by inspection of Figure 5, in which
the trajectories of the component waves in the early linear regime
are plotted for simulations 1 and 2. Note that the length and time
scales of the graphs have been adjusted so that the average slopes of

T (o)

POSITION

POSITION

TIME
Figure 5 Component wave trajectories for (a) simulation 1 and (b) simulation 2.
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the trajectories in the two cases appear equal, in order that we may
compare visually the relative variability of the phase speeds. The
variations in phase speed are clearly much greater in the moderately
stratified flow than in the strongly stratified flow, as predicted. We
note further that the component waves move fastest as they are
passing each other, and slowest when they are widely separated. As
we reduce the stratification, it is in this latter configuration that the
instantaneous phase speeds first vanish, and that the component
disturbances will become phase-locked to form the Kelvin-Helm-
holtz wave. (If we initialized a Kelvin-Helmholtz wave simulation
with two component waves in some other configuration, one above
the other, for example, the waves would propagate horizontally until
the appropriate configuration was reached before becoming phase-
locked.) The validity of these predictions may be verified by examin-
ing the first frame of Figure 4c, where we see two component waves,
well separated from each other (compare with frame 1 of Figure 4a),
and just beginning to roll up.

4.2The time-dependent structure of a Holmboe wave in
a strongly stratified flow

We turn now to a detailed examination of the Holmboe wave at
point 1 of Figure 2. In the analysis of this simulation, we are able to
focus on the essential dynamics of the Holmboe wave in the absence
of plume ejection. The complete instantaneous energy budget for the
point 1 wave is plotted in Figure 6. The top frame shows the energy
reservoirs K, K', and P as well as the total energy T=K +K’+ P.
Note that the values of K, K’, and T have been adjusted for ease of
presentation. The two vertical lines which intersect the three frames
of Figure 6 indicate sample points in the wave’s evolution at which
the waveform exhibits the extreme configurations: the left-hand line
corresponds to a point at which the upper and lower component
waves are just passing each other, while the right-hand line shows
the subsequent time at which the waves are maximally separated.
The potential temperature field at approximately these times is
shown in frames 2 and 3 of Figure 4.

As is evident from Figure 6, the total energy of the wave at point
1 decreases monotonically due to diffusion. The oscillatory behavior
of the wave corresponds to a periodic exchange of energy between
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Figure 6 [Energy budget for simulation 1. Vertical lines mark sample times at which
waves are (1) minimally separated, (2) maximally separated.

the three reservoirs, primarily between the wave kinetic energy and
the potential energy. The weak oscillations in K are due to the fact
that the wave extracts energy from the mean flow most efficiently
Just after the component waves have passed each other. In the
middle frame of Figure 6, we see again that the dominant energy
exchanges are between K’ and P, but note that the transfer from K
to K’ is nearly positive definite, and its cumulative effect is respon-
sible for the growth of the wave. Once the wave has reached large
amplitude, the part of the cycle during which C(K,K’) is large
divides into two intervals of similar duration. During the first
interval, the component waves have just passed each other, and the
wave is gaining kinetic energy both from the mean flow and from
the potential energy reservoir. In the second interval, the component
waves are approaching each other once again, and the kinetic energy
which the wave extracts from the mean flow, along with some of the
kinetic energy it has accumulated previously, is being converted into
potential energy.
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The diffusion terms are shown in the bottom frame. Recall that
D(P) represents an increase in potential energy, since diffusion in a
stably stratified environment works, on the average, to move mass
upward. It is clear that diffusion plays only a minor role in the
evolution of the flow as a whole once the wave has reached finite
amplitude, but it works constantly to dissipate energy at the smaller
scales of the motion and thus to cause the eventual decay of the
wave,

In Figure 7, we show the potential temperature and vorticity fields
for the wave at point 1 evolving through one half-cycle of a typical
oscillation. Again, the potential temperature contours are spaced
equally between 6*=09 and 6*=—09. The dark-shaded regions
correspond to counter-clockwise rotation, while light shading
denotes clockwise rotation. The intermediate shade of grey found
near the upper and lower edges of the domain represents irrotational
motion.

Underresolution is primarily responsible for the alternating dark
and light fringes which are visible in the vorticity field behind each
component wave crest. This simulation was run on a 128 x 128 grid,

10

2o ' 20 ' 2
Figure 7 Potential temperature and vorticity fields for simulation 1. White (black)
indicates clockwise (counter-clockwise) rotation. Potential temperature contours are as
in Figure 4.
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while 256 x 256 grids were used for the simulations at points 2 and 3.
The Holmboe wave at point 2 is very well resolved and shows no
fringes, while Holmboe waves simulated on grids of 128 x 128 points
or less develop fringes consistently. The fringes do not appear to
influence the evolution of the wave in any important way.

The concentrations of clockwise vorticity in the lee of each
component wave, which we referred to in the discussion of plume
ejection in Secton 4.1, are clearly visible. Stronger concentrations of
clockwise vorticity occur in the vicinity of the central temperature
interface, while counter-clockwise rotation is found primarily in the
crests of the component waves.

In Figure 8, the profiles of horizontally averaged potential temper-
ature deviation, velocity, Reynolds stress, and vertical heat flux are
shown for the times indicated in Figure 7. The potential temperature
and velocity profiles vary little during the cycle but the latter two
profiles, as they involve deviations from the mean fields, show a clear
periodic variation. The largest Reynolds stresses occur as the
component waves pass each other (frames 1 and 4 of Figures 7 and
8), at which time there is a vertical flux of horizontal momentum out
of the upper and lower regions of the shear layer, where the
Reynolds stress is negative, and into the centre of the shear layer,
where the Reynolds stress is positive. As the waves move apart, these
fluxes are reversed. At this time there is also a strong flux of heat out
of the central region of the shear layer, which is subsequently
reversed as the component waves approach each other once again.
Note that the rate C(K, K’) at which kinetic energy is extracted from
the mean flow is the product of the negative of the Reynolds stress
and the mean shear, integrated in the vertical. Since the mean shear
is largest at the centre of the domain, C(K,K’) is largest when the
Reynolds stress is large and negative at that point. This occurs in
frames 2 and 5, which correspond of the state of maximum
separation of the component waves. As we saw in Figure 6, this is
indeed the point in the cycle where the wave extracts kinetic energy
most efficiently from the mean flow. It is evident from the Reynolds
stress profiles that the configuration in which the waves are just
passing each other (frames 1 and 4) is well suited for the extraction
of energy from the mean flow near the edges of the shear layer. The
shear in those regions is weak, however, and C(K, K') is correspond-
ingly small at that point in the cycle.



206 W. D. SMYTH, G. P. KLAASSEN AND W. R. PELTIER

1
0l -7 (o] T

o0 | 4 0
] _ —_ % i—etl [ 5
e] u puw 2P %W (xi0®)

Figure 8 Horizontally averaged profiles of potential temperature deviation, velocity,
Reynolds stress, and vertical heat flux corresponding to the times shown in Figure 7.

We conclude the description of simulation | with a brief look at
the wave in the later stages of its evolution. In Figure 9 we show the
potential temperature and vorticity fields and the four horizontally
averaged profiles at two points late in the simulation, as indicated by
the final two pointers in Figure 3a. We notice first that the vertical
symmetry about the centre of the domain which was apparent at
earlier times has been broken. This did not occur in either of the
other two simulations, and it is probably due to the inertial effects of
the strong stratification, i.e. to the fact that a symmetrically distri-
buted force causes a slightly larger acceleration in the lighter fluid
near the top of the domain than in the dense fluid near the bottom.
Once the symmetry has been broken, one component of the
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Figure 9 Potential temperature, vorticity, and horizontally averaged profiles in the
later stages of simulation 1. Dashed curves indicate profiles at 1=0; dotted curves
show profiles which would obtain at the current time in the absence of wave growth,
as determined by Egs. (23) through (25).

Holmboe wave gradually disappears, while the other component
evolves into a sharp-crested interfacial wave of the type described by
Thorpe (1968b). This process will be described in detail in a separate
publication devoted to the evolution of shear instabilities on asym-
metric flows. The effects of diffusion and wave growth on the
horizontally averaged profiles of potential temperature and horizon-
tal velocity may be compared by inspection of the dashed and
dotted curves in Figure 9. The dashed curves indicate the profiles at
t=0, while the dotted curves represent the profiles which would
obtain at t=423.36 in the absence of wave growth, ie. if the
evolution of the flow was due only to diffusion. The dotted curves
were computed numerically from the diffusion equations

0U/ot=Re™'0*U/0z%, 00*/0t=(RePr)™'0*0*/022, (23)
with boundary conditions

00/0z=00%/9z=0 at z=0,H (24)



208 W. D. SMYTH, G. P. KLAASSEN AND W. R. PELTIER

and initial conditions
U(z,0)=tanhz, 0%z, 0)=tanhRz. (25)

It is evident upon inspection of the 6* profiles that thermal mixing
due to wave growth occurs primarily in the crest of the upper
component wave. Thermal mixing near the centre of the shear layer
is due almost entirely to diffusion. Near the outer edges of the
domain, the 6* profile has evolved very little since t=0. In contrast,
the U profiles reveal that momentum mixing has occurred through-
out the domain, due primarily to diffusion near the centre of the
domain, and to wave action near the boundaries.

4.3 The time-dependent structure of the Holmboe wave
in a moderately stratified flow

As we saw in Figure 4, the behavior of the Holmboe wave at point 2
of Figure 2 is strikingly different from that of its counterpart at point
I, yet upon examination of the energy budget for the former
(Figure 10, compare with Figure 6), one notices little difference from
the more strongly stratified case. The differences which are visible in
the potential temperature fields consist primarily of small scale flow
structures which develop in consequence of the reduced level of
stratification, and whose effects are not readily apparent in the
spatially averaged quantities which make up the energy budget.

The reduction in oscillation frequency is readily apparent, and is
reflected in the fact that the rate of energy transfer between the wave
kinetic and potential energy reservoirs, C(P,K’), is relatively small,
although inspection of the P and K’ curves reveals that the amount
of energy exchanged in each oscillation is nearly the same as it was
in simulation 1. The points in time at which plume ejection occurs
coincide with the points at which C(P,K’) is large and negative. The
latter condition indicates a conversion of wave kinetic energy into
potential energy as heavy fluid is directed upward and light fluid is
directed downward. In Figure 10, the negative peaks in C(P,K') are
slightly larger in magnitude than the adjacent positive peaks,
whereas in simulation 1 (cf. Figure 6), where plume ejection was not
observed, the negative peaks in C(P, K') are smaller than the positive
peaks.
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Figure 10 Energy budget for simulation 2. See Figure 6 for details.

While the value of D(K) in simulation 1 becomes roughly constant
(apart from periodic fluctuations) as the wave reaches maximum
amplitude, it continues to decrease throughout the simulation at
point 2. The fluctuations exhibited by D(K) consist of very brief
jumps which occur just as the component waves pass through the
state of maximum separation. The value of D(K’), again ignoring
periodic fluctuations, is very nearly equal to that found in simulation
1 for all times, although one might expect increased dissipation due
to the greater degree of small-scale structure in the flow to be
reflected in a generally larger value of D(K').

The relative dominance of small scale structure in simulation 2 is
apparent upon examination of the potential temperature field, which
is shown along with the vorticity field in Figure 11. It will be
observed that the vorticity fringes which appeared in simulation 1
due to underresolution are absent, as we have increased the number
of grid points to 256x256 in order to resolve the small scale
structures.
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Figure 11 Potential temperature and vorticity for simulation 2. See Figure 7 for
details.

In the inner regions of the component waves, near the central
temperature interface, we see small regions of overturning fluid. At
these points the potential temperature contours are spread apart,
while vorticity is strongly concentrated. The local value of the
gradient Richardson number is thus relatively small, which leads to
overturning via Kelvin—-Helmholtz instability.

In the lee of the component wave crests, concentrations of
clockwise vorticity are clearly visible, and as the component waves
approach each other, plumes develop which shed small parcels of
fluid from their tips into the downstream vortices. We mentioned in
Section 4.1 that plumes are generated when the vortices become
strong enough to entrain stratified fluid from the downstream faces
of the wave crests, and that this occurs primarily as the waves pass
through the state of maximum separation and begin to approach
each other. We now seek to explain why plume generation occurs at
this particular point in the cycle.

The ability of a downstream vortex to entrain stratified fluid is
controlled by two factors, namely the structure of the component
wave and the strength of the vortex. The shape of one component of
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the wave fluctuates due to nonlinear interactions with the second
component. Fluctuations in the strength of the vortex, however, are
to be expected as a consequence of changes in the phase speed of the
component waves. As this phase speed fluctuates, so does the speed
of the background flow in a reference frame moving with the wave,
and the latter speed is the dominant factor which controls the
strength of the downstream vortex. Results shown in Figure 5 reveal
that when the component waves are widely separated, their phase
speed is at a minimum, hence the strength of the downstream vortex
is at a maximum. Conversely, the component waves move quickly as
they pass each other, and the downstream vortices are thus relatively
weak at this point. As a result, plumes grow as the waves approach
each other and subside as they move apart.

We now examine the profiles of horizontally averaged velocity,
potential temperature deviation, Reynolds stress and vertical heat
flux shown in Figure 12, in which the six frames correspond to the
six frames of the preceding figure. There is little variation in the
potential temperature and velocity profiles through the half-cycle.
The Reynolds stress profiles indicate a net flux of horizontal
momentum into the centre of the shear layer as the component
waves pass each other (frames 4 and 5) which is reversed as the
waves move apart (frames 6 and 1). At the latter stage of the cycle,
the heat flux profile shows a net flow of heat out of the centre of the
shear layer which is reversed as the component waves approach each
other (frames 3 and 4). These qualitative features are all similar to
the results of simulation 1, shown in Figure 8.

In the later stages of wave evolution, illustrated in Figure 13, we
see that the mean profiles of potential temperature and velocity have
diffused considerably, and that vertical symmetry about the central
level z=H/2 has been maintained, in contrast to the symmetry
breaking observed in simulation 1 (Figure 9). As in Figure 9, the
dashed curves on the 8* and U plots represent the initial conditions,
while the dotted curves illustrate the diffusive mixing which would
have occurred in the absence of wave growth. Comparing the
vorticity field at t=480 with that shown in the third frame of
Figure 11 (in which the wave exhibits the same configuration), we
see that the vortices downstream of the component waves have
weakened considerably. As an result there are no visible plumes,
although it is apparent that the cumulative effect of plume entrain-
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Figure 12 Horizontally averaged profiles for simulation 2 at times corresponding to
Figure 11.

ment has led to substantial thermal mixing in the vortices. The
momentum mixing which has occurred is due primarily to diffusion
throughout the domain. This is in contrast with the results from the
simulation of the more intensely stratified flow shown in Figure 9,
where strong momentum mixing due to wave action is evident near
the upper and lower edges of the domain. This contrast is probably
due to the difference in linear growth rates between the two waves.
The wave shown in Figure 9, having a relatively large growth rate,
has attained an amplitude which is sufficient to influence the flow
throughout the domain, whereas the more slowly growing distur-
bance shown in Figure 13 has remained confined to the vicinity of
the shear layer.
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Figure 13 Late stages of simulation 2, as in Figure 9.

4.4 The time-dependent structure of a Kelvin-Helmholtz
wave in a weakly stratified flow

We conclude this section of the paper with an examination of the
data from the simulation at point 3 of Figure 2. In this case, small-
scale structure developed to such an extent that, even using a
256 x 256 grid, the flow became underresolved shortly after the wave
reached maximum amplitude. The energy budget is shown in
Figure 14. The wave kinetic energy increases to a maximum near
t=80. During this period the wave gains energy from the mean flow
[C(K,K")>0], some of which is passed on to the potential energy
reservoir [C(P,K')<0]. After t=80, K’ decreases rapidly due to a
large transfer of kinetic energy from the wave to the mean flow.
During this period, the potential energy reservoir is also depleted as
the vortex core of the Kelvin—Helmholtz wave flattens under the
influence of gravity. In simulations of a Kelvin-Helmholtz wave in a
flow with R=1 and J=0.07, Klaassen and Peltier (1985a) have
shown that this three-way energy exchange (between K and P, via
K’) is quasi-periodic, i.e. that C(K,K’) and C(P,K’) continue to
exchange signs at regular intervals. The present simulation was not
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Figure 14 Energy budget for simulation 3.

extended for long enough to discover whether such periodicity would
occur in this case.

The potential temperature and vorticity fields for simulation 3 are
shown in Figure 15. It should be noted that while the Kelvin-
Helmholtz vortex which forms appears round, it actually has a
horizontal/vertical aspect ratio of about two, as the plots have been
compressed by a factor of 2:1 in the horizontal direction. In the later
stages of the simulation (not shown here), the aspect ratio of the
vortex core increases to about four, then decreases again. A feature
which was not observed in the simulations of Klaassen and Peltier
(1985a) is the appearance of regions of clockwise vorticity in the
core. This is due to baroclinic vorticity generation in the overturned
regions, which is much more important in the present simulation
than it was in the work of Klaassen and Peltier because of the more
intense stratification employed in this instance.

In Figure 16 we see that the growth of the wave has a marked
effect on the background profiles, particularly that of potential
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Figure 15 Potential temperature and vorticity for simulation 3. See Figure 7 for
details.

temperature. Both thermal and momentum mixing in the Kelvin-
Helmholtz simulation are due almost entirely to wave growth, since
diffusion has not yet had time to modify the flow substantially. This
Is in contrast with the case of the more slowly growing Holmboe
wave, whose contribution to the mixing of heat and momentum is
comparable in magnitude to that of diffusion, as was seen in Figures
9 and 13. The Reynolds stress and heat flux due to the Kelvin—
Helmholtz wave are both negative until the wave reaches maximum
amplitude, at which point they become positive. This is in accord
with the findings of Klaassen and Peltier (1985a).

5. SUMMARY

We have simulated the nonlinear evolution of an initially horizontal
shear layer which contains at its centre a thin layer of stable density
stratification. An inviscid linear stability analysis reveals that the
flow is unstable, however strong the stratification may be. Kelvin—
Helmholtz instability is predicted if the stratification is sufficiently
weak; if the level of stratification exceeds a critical value, Holmboe
instability appears.
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Figure 16 Horizontally averaged profiles for simulation 3 at times corresponding to
Figure 15. As in Figure 9, the dashed and dotted curves in the final frame represent
pofiles at t=0 and at the current time, evolving in the absence of wave growth.

While the behavior of Kelvin—Helmholtz waves has been described
in detail in previous publications (e.g. Peltier et al, 1978; Klaassen
and Peltier, 1985a), the present study represents the first theoretical
investigation of the nonlinear Holmboe wave. We have presented
results from a sequence of three numerical simulations, employing
strong, moderate, and weak stratification, by means of which the
nonlinear evolution of the Holmboe wave and its relationship to the
Kelvin-Helmholtz wave have been investigated.

The Holmboe wave consists of two horizontally propagating
component waves, one propagating to the right and having its
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largest amplitude in the upper (rightward moving) region of the
shear layer, the other propagating to the left and residing primarily
in the lower (leftward moving) region of the shear layer. The
component waves resemble solitary waves in that they are highly
localized in the horizontal direction. The lower component wave is
inverted, i.e. its crest extends downward. Near the centre of the shear
layer, the component waves have nearly equal amplitudes, and they
thus interfere to create a standing oscillation.

The phase speeds of the upper and lower waves depend upon their
relative position; they move quickly as they pass each other and
more slowly when they are widely separated, with the phase speed
reaching a minimum near the state of maximum separation. Down-
stream from the component waves, vortices form which are strongest
when the component waves are moving slowly. During this phase
(ie. as the component waves approach each other), the vortices
entrain long, thin plumes of stratified fluid from the downstream
faces of the component waves, provided that the local stratification is
not too strong. As the component waves pass each other and move
apart again, the downstream vortices weaken and the plumes
subside.

The average phase speed of the component waves decreases as the
level of stratification is decreased, and since the waves are then able
to interact more strongly, their tendency to decelerate when they are
widely separated from each other increases. At some critical value of
the bulk Richardson number, the minimum instantaneous phase
speed of the component waves vanishes, this occurring near the state
of maximum separation. The waves then become phase-locked in
this configuration and wind around each other to form the Kelvin—
Helmbholtz vortex.

Holmboe waves in laboratory experiments are often observed to
become three-dimensional very early in their evolution, and this, in
combination with the fact that the linear growth rate of the
Holmboe instability may increase with stratification, has prompted
the suggestion that the primary Holmboe instability is three-
dimensional (Lawrence et al., 1987; also see Spedding, 1988). While
this may be true for the low Reynolds number flows which occur in
laboratory experiments, our analyses have indicated that when the
Reynolds number is sufficiently large, the primary instability is
two-dimensional, and we suggest that such flows become three-
dimensional in consequence of a secondary instability. We intend to
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test this conjecture in the near future by investigating the stability of
two-dimensional Holmboe waves to infinitesimal three-dimensional
perturbations by means of linear stability analysis, as was done for
the nonlinear Kelvin-Helmholtz wave by Klaassen and Peltier
(1985a). In addition, we are investigating the possibility that the
fastest-growing primary Holmboe instability in a flow with suffi-
ciently low Reynolds number is three-dimensional.* The results of
these calculations will make possible the design of fully three-
dimensional simulations of Holmboe waves, and will extend our
current understanding of the transitions through which a stratified
shear flow becomes turbulent.

*Recent computations have confirmed the existence, at low Reynolds number, of a
region of parameter space in which the fastest-growing Holmboe instability is three-
dimensional. The parameter values chosen for our simulations lie outside this region,
but those which obtain in the laboratory experiments of Lawrence et al. 1987) may
not. A detailed description of these results will be included in a subsequent
publication.
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Appendix

STABILITY OF THE HOLMBOE MODEL TO TWO AND
THREE-DIMENSIONAL DISTURBANCES

The piecewise-linear profiles shown by the dashed lines in Figure 1
provide a convenient model from which to predict the behavior of
the more realistic flows which they approximate, because their
stability properties can be investigated analytically. In this appendix,
we seek to infer the dimensionality of the primary Holmboe
instability in the general case by investigating the relevant stability
characteristics of this simple model. The dispersion relation for the
Holmboe profiles is

o*+bo?+c=0, (A.1)
in which (Holmboe, 1962; Drazin and Howard, 1964)
b=a,a +o, c=oaja*,

j=Agh/u}, a,=(1-2a+e 292
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The contour plot of a(x, j) is qualitatively very similar to that shown
in Figure 2. It may be found in Browand and Wang (1972) or in
Lawrence et al. (1987).

Our first objective is to define the curve a=a,(j) which is the
locus of all points in the Holmboe wave regime at which the real
part of ¢ is maximized with respect to . The Holmboe wave regime
is bounded by the curves on which the discriminant of (A.1),
(b+2¢'?)(b—2¢'?) vanishes. Differentiating (A.1) and setting do to
zero, we find

|o|*+5blo|* +(dc/db)(3b+ 02 —307) =0. (A.2)

Now since the roots 62 of (A.1) occur in complex conjugate pairs,
we know that

202=c'?—3b; 20}=c'+3b, (A3)

which enables us to eliminate ¢ from (A.2). The result may be
rearranged to give

(b+2¢"2)(c"/? —dc/db) =0. (A4)

The root b+2c'>=0 defines one boundary of the Holmboe wave
regime. The other possibility, ¢'/>—dc/db=0, may be integrated to
give

2 =1p+262, (A.5)

where (A.3) has been used to identify the constant of integration. As
we have assumed that the discriminant of (A.1) is negative, curves of
constant g, are segments of parabolas in the (b,c) plane. When we
rewrite (A.5) in terms of « and j, retaining the abbreviations a, and
a_, we find a quadratic equation for (2j)'/* whose solutions are

(@j)'?=la_|+(a> —a,a_—4a)'2. A.6)

For a given value of o, the maximum possible growth rate is given
by 6?=1a_(a_—a.), at which

(@) =la_|. (A7)
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Equation (A.7) thus defines the curve on which the fastest-growing
modes of instability are found.

We now examine these results to discover whether there is any
point on the curve described by (A.7) at which the ratio ¢?/j
increases with increasing j, the signal of a three-dimensional primary
instability. The last two results combine with the definitions of a,
and a_ to give

of/j=ola_—a,)/da_=}ue /(e *+a—1), (A.8)

the right-hand side of which is easily shown to be a monotonically
decreasing function of o for all «>0. Since j increases monotonically
with & on the curve defined by (A.7), 62/j increases monotonically
with j. We thus conclude that the inequality (12) of Section 2 is not
satisfied anywhere in the Holmboe wave regime, i.e. that the fastest-
growing Holmboe mode in the piecewise-linear model is always
two-dimensional.
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